Zona de descarga de Software

Zona de descarga de Software

Los mejores programas informáticos de estructuras que te hacen la vida mas fácil

Quienes somos

Quienes somos

Una breve descripción de quienes somos y a qué nos dedicamos.

Normativas y guías

Normativas y guías

Zona de descarga de Normativas y Guías sobre estructuras en el ámbito internacional

 

Aplicación inusual de un programa de cálculo de estructuras: estudio de una cuerda de guitarra

Normalmente cuando se piensa en un programa de cálculo de estructuras, intuitivamente lo asociamos al análisis de esfuerzos en puentes o edificios. En este post vamos sin embargo a explorar una de las posibilidades que ofrece este tipo de software (concretamente SAP2000) más allá de lo que es estrictamente el cálculo de esas grandes construcciones.

Guitarra y frecuencia

En concreto, abordaremos el estudio de algo tan pequeño y bello como es la vibración de la cuerda de una guitarra. Ello nos permitirá servir de base para entender mejor el fenómeno físico, y de paso conocer el modo en que intervienen las diferentes variables que lo controlan.

BREVE DESCRIPCIÓN DEL FENÓMENO FÍSICO

Intuitivamente se entiende que una cuerda elástica en tensión vibra libremente bajo su propio peso tras ser golpeada. Dicha vibración genera un sonido (ondas de choque) cuyo registro se corresponde con el ritmo  vibración de la cuerda. Cuanto más tensionada esté la cuerda, mayor será su frecuencia de vibración (el número de veces que oscila por segundo) y por tanto más agudo será el sonido. De la misma forma, a igualdad de tensión, cuanto más reducida sea la longitud de la cuerda, mayor será nuevamente la frecuencia, emitiéndose por tanto un sonido más agudo.

Guitarra y frecuencia 1

Esquema de cuerda vibrante, con indicación de las variables que intervienen. Fuente (3)

CARACTERÍSTICAS DEL MODELO DE CÁLCULO Y DATOS PRINCIPALES

Para ponerle números a este fenómeno, hemos confeccionado con SAP2000 un modelo analítico de una cuerda de guitarra eléctrica (la cuerda nº1, las más aguda). En principio el modelo parece sencillo, al tratarse de un único elemento recto de sección constante, el cual se encuentra (a efectos prácticos) totalmente empotrado en ambos extremos.

Guitarra y frecuencia 2

Esquema del anclaje de las cuerdas en puente y clavijero. Fuente (1)

 No obstante, hemos de tener en cuenta que dado la frecuencia de vibración parece depender de la fuerza axial de la cuerda (según hemos señalado antes), se trata de un caso donde es especialmente importante tener en cuenta la geometría deformada de la cuerda en el análisis (cálculo con no linealidad geométrica).

Para confeccionar el modelo, hemos recabado de Internet los datos geométricos y mecánicos que necesito, a saber:

– Longitud total libre de la cuerda (distancia entre el puente y la clavijro): Unos 650 mm

– Diámetro de la cuerda: Existen varios diámetros, en función del tipo de cuerda. Un valor habitual para la cuerda nº 1 es de 0.28 mm, tal y como se recoge en la siguiente tabla. El área será por tanto 0.0616 mm2

Caracterísicas habituales de las cuerdas de guitarra eléctrica. Fuente: (2)

Caracterísicas habituales de las cuerdas de guitarra eléctrica. Fuente: (2)

– Peso especifico y módulo de deformación del material: Al tratarse de cuerdas de acero, se toma un peso específico de 77 kN/m3, y un módulo de deformación de E=200.000 MPa.

– Tensión de trabajo de la cuerda:  En internet existen numerosas reglas básicas para determinar la tensión necesaria de una cuerda, en función de sus características mecánicas y la frecuencia requerida. Por ejemplo, incluimos la siguiente extraida del catálogo de cuerdas de la casa D’Addario:

Regla para obtener la tensión en la cuerda de una guitarra. Fuente: (2)

Regla para obtener la tensión en la cuerda de una guitarra. Fuente: (2)

Aplicando la regla anterior, para la cuerda nº1, y según el diámetro considerado, la fuerza total a la que debe estar sometida (la que se introduce durante la afinación) es de unos 86 N Esto hace que la tensión de trabajo de la cuerda sea de casi 1400 MPa. Encontramos por tanto la bonita coincidencia de que la cuerda nº1 de una guitarra trabaja a unos niveles de tensión muy similares a los de los cables de pretensado de los puentes.

Con ello, se confecciona modelo de cálculo, con las características que aparecen a continuación:

Caracterísicas generales del modelo SAP realizado. Fuente: elaboración propia

Caracterísicas generales del modelo SAP realizado. Fuente: elaboración propia

La discretización del modelo se realiza automáticamente por el programa en tramos comprendidos entre 5 y 10 mm.

Con este modelo voy a tratar de estudiar los modos principales de vibración de la cuerda bajo su propio peso, teniendo en cuenta la influencia de una fuerza constante de tracción.

OBTENCION DE RESULTADOS DEL MODELO

VIBRACIÓN DE CUERDA AL AIRE Y PRIMER ARMÓNICO

Tras resolver el modelo, se obtiene ya el primer resultado interesante cuya validez se puede contrastar: El primer periodo de vibración de la cuerda es T=0.00306 seg, lo que implica una frecuencia (1/T) de f=327 Hz.

Guitarra y frecuencia 6

Deformada correspondiente al primer modo de vibración. Fuente: elaboración propia y (1)

Deformada correspondiente al primer modo de vibración. Fuente: elaboración propia y (1)

­­­La cuerda que se ha modelizado (cuerda n 1 al aire) debería vibrar a la frecuencia correspondiente a la nota Mi (E) en la octava 3. En la figura siguiente se observa que esa frecuencia es  329.6 Hz (1st string, Open):

Guitarra y frecuencia 8

Tabla de frecuencias tipificadas de las notas musicales. Fuente (2)

Tabla de frecuencias tipificadas de las notas musicales. Fuente (2)

Se puede observar por tanto que la frecuencia para la citada nota (Mi_3) es practicamente al valor obtenido en el modelo (327 Hz), con una diferencia de menos de un 1%.

El segundo modo de vibración de la cuerda tiene una frecuencia de 654 Hz (T=0.00153 seg), que corresponde muy aproximadamente con la nota Mi_4. Por la forma del modo de vibración (con amplitud nula en el centro de la cuerda), y por la frecuencia obtenida, se puede ver que se trata del primer armónico que se puede escuchar en cualquier guitarra poniendo el dedo sobre el traste nº12 (situado en la mitad) mientras vibra la cuerda.

Deformada correspondiente al segundo modo de vibración (primer armónico). Fuente: elaboración propia

Deformada correspondiente al segundo modo de vibración (primer armónico). Fuente: elaboración propia

DETERMINACIÓN DE LA SEPARACIÓN ENTRE TRASTES

Otro aspecto interesante que se puede estudiar con el modelo realizado, es la forma en que se incrementa la frecuencia de vibración principal de la cuerda (1er modo) conforme se reduce la longitud de la misma. En una guitarra, presionar la cuerda sobre un traste es precisamente la forma de reducir la longitud de vibración de la misma, y por tanto modificar el registro de la nota producida. Conociendo la ley que relaciona la longitud de la cuerda con la frecuencia de vibración, podríamos llegar a conocer las posiciones necesarias de los diferentes trastes en el mástil de una guitarra, teniendo en cuenta la nota que se requiere al pisar cada uno de ellos.

Para obtener la citada ley, he calculado la frecuencia propia de vibración del primer modo, para un rango de longitudes que varían desde los 650 mm hasta los 180 mm, en intervalos de 10 mm. Los resultados obtenidos se resumen en la siguiente tabla:

Relación entre la longitud de vibración y la frecuencia obtenida. Fuente: elaboración propia

Relación entre la longitud de vibración y la frecuencia obtenida. Fuente: elaboración propia

Gráficamente queda de la siguiente forma:

Expresión gráfica de la relación obtenida entre la longitud libre y la frecuencia obtenida. Elaboración propia

Expresión gráfica de la relación obtenida entre la longitud libre y la frecuencia obtenida. Elaboración propia

Sabemos que cada traste de la guitarra produce una nota musical medio tono superior a la del traste anterior. Partiendo de la nota Mi_3 (329.64 Hz), podemos introducir en el eje de ordenadas, y a modo de líneas horizontales, la frecuencia de las 22 notas siguientes, hasta llegar a la nota  Re_5 (1174.72 Hz), que es normalmente la mas aguda que se puede producir con los trastes de una guitarra eléctrica clásica (una Strato por ejemplo). La intersección de esas líneas horizontales con la curva obtenida anteriormente, nos tendría que dar las distancias a la que deben situarse los diferentes trastes en el mástil de una guitarra.

En el siguiente gráfico se observan las distancias de los trastes obtenidas según lo indicado en el párrafo anterior. Para comprobar la validez de los resultados, se ha introducido la foto (escalada al gráfico) del mástil de una Fender Stratocaster:

Guitarra y frecuencia 13

Posicionamiento de los trastes, para las frecuencias consideradas. Fuente: elaboración propia Puede observarse que, efectivamente, las posiciones reales a las que se sitúan los trastes coinciden con las obtenidas en la gráfica realizada.

CONCLUSIÓN

En este post hemos puesto un ejemplo de la ámplia variedad de fenómenos físicos que pueden ser analizados con un programa de cálculo de estructuras. El de hoy nos ha permitido conocer un poco mejor algo tan bonito como es la vibración de las cuerdas de una guitarra, situar en orden de magnitud las diferentes variables que intervienen en el proceso, así como conocer la relación entre ellas.

Muchas gracias por vuestro interés.

Páginas web consultadas para la elaboración del presente post:

 


¿Quieres ser el primero en leer nuestros artículos?

Déjanos tu nombre y un email válido, y nosotros te avisaremos cuando hayan novedades en Estructurando

Flecha-roja

The following two tabs change content below.
Ingeniero de Caminos por la Universidad de Granada. Proyectista de estructuras desde el año 2002. Director técnico en la oficina ACL Estructuras. He participado en más de un centenar de proyectos de estructuras de ámbito nacional e internacional, incluyendo viaductos de alta velocidad, puentes singulares, edificación no convencional, grandes esculturas, depósitos y estructuras para obras marítimas. Invitado colaborador de Estructurando.net desde Enero de 2016

7 Responses to Aplicación inusual de un programa de cálculo de estructuras: estudio de una cuerda de guitarra

  1. Anónimo dice:

    ¡Qué interesante y original!

    Si ya era Estructurando.net una página con grandes posts, colaboradores así la van a hacer aún mejor.

    Feliz 2016!

  2. Felicitaciones, un excelente análisis.

    Será posible comentar una solución para cubrir grandes luces industriales de un piso con columna separadas, por ejemplo cada 729 m2 y techo inclinado plano máximo 10° o columnas separadas cada 1,800 m2 con techos curvos.
    Muchas gracias
    Alberto

  3. Muy original!! Me ha encantado felicidades al autor!

  4. Isabel dice:

    Qué análisis más curioso y más bonito! Enhorabuena al autor y a Estructurando 🙂
    Así pues, SAP hace análisis no lineal teniendo en cuenta No linealidad geométrica…¿se podría entonces entender la cuerda como un tirante sometido a su peso propio y con una tensión de tesado? Muy interesante!

  5. Gracias por los comentarios. Respondiendo a Isabel, efectivamente se puede encontrar una gran similitud entre el tirante de un puente y un cuerda de guitarra. De hecho un procedimiento habitual para determinar la fuerza real a la que está sometido un tirante (conociendo su sección, longitud y peso por metro lineal) es medir mediante una excitación exterior, la frecuencia de vibración del mismo.

  6. Patricio Ruiz dice:

    Felicitaciones por explicar el maravilloso enlace de los números con la música. Un Ingeniero integral.

  7. David Rodríguez dice:

    Me ha parecido muy interesante. De hecho, me gustaría reproducir los cálculos pero no sé cómo considerar la tensión de la cuerda en el cálculo modal. ¿Me podrías orientar? Muchas gracias. Un saludo

Deja un comentario

Tu dirección de correo electrónico no será publicada.