Category Archives: Geotecnia

Abierto el plazo de inscripción a nuestros cursos de estructuras

Como anunciamos antes del verano, nos hemos liado la manta a la cabeza y hemos decidido montar Cursos de Cálculo de Estructuras en nuestra propia plataforma online.

Abierto el plazo de matriculación OCT

Ya tenemos nuestra plataforma online montada. Podéis entrar pulsando en el siguiente botón (también está en la esquina superior derecha de nuestro blog):

portal

Hemos asignado fecha a los cursos y hemos abierto el plazo para matricularse. Os listamos los cursos con las fechas y la forma de matricularse:

Cómo calcular el ángulo del talud en el trasdós de una aleta

Ya han pasado las vacaciones de verano y volvemos con las pilas cargadas. 😎

En este post de arranque de temporada, vamos a hablar de un tema con el que nos podemos encontrar al proyectar un elemento de contención. Se trata de cómo determinar el ángulo del talud del terreno en el trasdós de un elemento de contención, cuando este corta el talud con un ángulo oblicuo. Esto muy usual con las aletas de los marcos o pasos inferiores.

aleta

Lo normal es que sepamos el ángulo del talud de la carretera (α) y el angulo en planta de la aleta con el eje de la vía (ψ). Pero, ¿cómo obtener el ángulo del terreno en el trasdós de las aletas (δ)? Esto es de vital importancia puesto que los empujes en las aletas vienen determinados por dicho ángulo.

Aleta_transversal
La aleta es un muro,

Después de verano inauguramos cursos de estructuras en nuestro blog

Desde hace tiempo hemos ido recibiendo mails y comentarios de nuestros lectores pidiéndonos información sobre cursos y másteres sobre ingeniería estructural. En un principio añadimos la sección de “Cursos” y “Másteres” al blog, dejando información sobre este tema que, a nuestro juicio, tenían especial interés.

Sin embargo, seguimos recibiendo mails solicitándo que fuéramos nosotros mismos los que diéramos alguna clase de formación sobre estructuras.

cursos estructurando

Así que David y yo lo hablamos y tras pensarlo detenidamente hemos decidido realizar cursos de estructuras en nuestro portal basándonos en las siguientes premisas:

  • Los cursos deben ser claros, amenos, llenos de información útil y, sobre todo, prácticos. Que sean útiles en la vida cotidiana del ingeniero de estructuras. Es decir, basarse en el mismo principio con el que partimos cuando empezamos este blog de estructuras. Al fin y al cabo,  ¡es nuestra seña de identidad!
  • Deben contar con el software más puntero del sector para que los cursos sean realmente útiles. Para ello hemos realizado convenios y acuerdos con distintas empresas del sector. Y no sólo contar con el software si no también con la colaboración de sus desarrolladores, lo que da un importante valor formativo a los cursos.
  • Que llenen los huecos con los que el técnico de estructuras se va encontrando a lo largo de su labor profesional (cursos novedosos).

Con estos principios en la cabeza y después de llamar a mucha gente, os presentemos de forma resumida los tres cursos que empezaremos a impartir el próximo octubre:

Piloedre, un nuevo tipo de cimentación para estructuras ligeras

Cuando me enteré que este nuevo sistema de cimentación para estructuras ligeras lo había desarrollado Juan José Rosas, uno de los blogueros más punteros y curtidos de la blogosfera ingenieril, no dudé en ponerme en contacto con él para que me contara, de primera mano, de qué se trataba.

Piloedre

En cierto sentido me siento en deuda con Juan José por que leer blogs como el suyo, Geojuanjo, fue uno de los principales estímulos para crear el nuestro.

Así que, dado que Juan José me ofreció multitud de información sobre el invento, la existencia de esa sentimental deuda que os comento y, sobre todo, porque el sistema es de lo más interesante en cimentaciones que he visto hace tiempo, os propongo el post de hoy. Un post donde os describo el sistema, explico para qué sirve y cómo se instala, sus ventajas frente a otras soluciones y, lo más interesante, cómo se calcula.

Webinar técnico sobre Zapatas de naves industriales

Nuestros amigos de Zigurat nos informan que van a realizar un webinar sobre zapatas de naves industriales.

zapatones

Frecuentemente, cuando calculamos las zapatas de naves industriales, nos encontramos con que las dimensiones son enormes para el poco peso de la construcción, pero ¿es el peso la acción determinante?

En este webinar, nuestros amigos nos van a explicar el porqué del tamaño de las zapatas en naves y qué alternativas tenemos para diseñar la cimentación.

Se han establecido 2 fechas. Para acceder a cualquiera de ellas basta con

Tipos de empujes a considerar sobre una estructura de contención

Vamos a dedicar este post a repasar un tema que, aunque muchos conocen, es posible que ponga de relieve alguna consideración que en ocasiones se quede en el tintero.

Cuando se calcula una estructura de contención de tierras, existen distintos empujes a considerar dependiendo de la movilidad relativa entre la estructura y las partículas del suelo.

Excavacion
Básicamente podemos hablar de tres tipos de empujes:

  • Empuje activo
  • Empuje al reposo
  • Empuje pasivo

Estos empujes tienen un valor creciente según bajamos en la lista, es decir, el activo es el menor de ellos, luego vendría el empuje al reposo y finalmente, el de mayor valor sería el pasivo. Es fundamental, por lo tanto, aplicarlos correctamente.

Entrevista a D. José Luis Manzanares Japón

D. José Luis Manzanares Japón (Sevilla, 1941) es Doctor Ingeniero de Caminos, Canales y Puertos, catedrático de Estructuras de la Escuela Técnica Superior de Arquitectura de Sevilla, académico de la Real Academia de Ciencias de Sevilla y de la Academia de Ciencias Sociales y de Medio Ambiente de Andalucía, fundador y director de AYESA, unas de las ingenierías más importantes del país.

Hoy nos acoge en su despacho, en la cuarta planta del edificio de AYESA, para que le entrevistemos.

JOSE LUIS MANZANARES JAPÓN

En primer lugar, muchas gracias por atender nuestra petición de entrevistarle. Es todo un honor.

Si le parece, empezaremos hablar un poco de usted antes de entrar en aspectos más técnicos de sus obras. Y al final, si no tiene inconveniente, hablaremos de su vertiente más social, de temas candentes que afectan a nuestro gremio en particular y a la sociedad española en general.

Cuéntenos brevemente cómo fue su infancia y adolescencia: qué tipo de educación recibió y por qué decidió ser Ingeniero de Caminos.

Cómo calcular anclajes al terreno tipo Dywidag o Gewi

En el post de hoy vamos a entrar de lleno en cómo se realiza el cálculo de anclajes de barras o de cables de tipo Dywidag o Gewi, los más usados. Además de dar la formulación estricta para el cálculo, daremos unos números gordos para un rápido dimensionamiento y documentación interesante descargable de estos anclajes al terreno.

Anclajes al terreno

Método matricial para estructuras con EXCEL

Todos solemos tener nuestras propias hojas de cálculo en Excel que nos facilitan los cálculos de nuestras estructuras. En este post os explicamos cómo puedes usar Excel para resolver estructuras mediante el método matricial de la rigidez. Y te lo explicamos con un ejemplo: con una hoja de cálculo de esfuerzos laterales en pilotes, con diferentes estratos y usando el método matricial.

Hoja de cálculo esfuerzos laterales en pilotes mediante método matricial

Hoja de cálculo esfuerzos laterales en pilotes mediante método matricial

Si recordamos un poco de nuestras clases de análisis de estructuras, el método matricial de la rigidez consistía en asignar a la estructura de barras una matriz de rigidez, que relaciona los desplazamientos de un conjunto de nodos de la estructura con las fuerzas exteriores que es necesario aplicar para lograr esos desplazamientos mediante la siguiente ecuación:

método matricial

A esta altura supongo que ya habréis caído en la cuenta que para usar este método es necesario que Excel multiplique e invierta matrices. Lo más seguro que os preguntéis: ¿Puede Excel invertir o multiplicar matrices? La repuesta es un rotundo. Entiendo que es ahora cuando empezáis a salivar pensando en las cosas que se pueden hacer con este método. 😉

Obviamente, no vais a resolver cada estructura que os aparezca con este método en Excel. Para eso están los programas de cálculo matricial. Pero a veces, si la estructura es repetitiva y simple, cuesta más hacer el modelo y asignar lo valores en los programas matriciales que tener todo preparado en una hoja de cálculo.

Actualizamos nuestra sección de Normativas. Ahora con nuevas joyas sobre los Eurocódigos

No solo añadimos las siguientes tres joyas sobre los Eurocódigos, si no que actualizamos toda nuestra sección “Normativas y Guías” con documentación de varios países.

NORMATIVASAhora, en nuestra sección, contamos con links de descarga de normativas y guías relacionadas con el cálculo de estructuras de varios países y uniones.

PAISES

Y hoy os presentamos otras tres nuevas guías de uso, con ejemplo resueltos, de los Eurocódigos:

NORMATIVAS EUROCODIGOS

En el post “Descárgate dos joyas sobre los Eurocódigos” os dejamos links y descripciones de dos guía de uso de los eurocódigo, una sobre el cálculo de puentes y otro sobre la utilización del Eurocódigo 8 y el cálculo sísmico.

Hoy os dejamos estas tres nuevas publicaciones:

Descárgate un programa para realizar todas las combinaciones de acciones en estructuras (ELU y ELS)

Ya hemos hablado en varios posts de lo difícil que nos lo ponen las normativas para realizar todas las combinaciones para los Estados Límites Últimos y de Servicio: Compatibilidades, incompatibilidades, grupos de cargas, distintos coeficientes de combinación… Pues bien, ya os podéis descargar un sencillo programa informático para que haga este trabajo por vosotros. Se llama COMBINADOR.

COMBINADOR

Este programa nace de la idea de elaborar sencillas herramientas que hagan la vida al calculista un poco más fácil. Existen en el mercado programas muy sofisticados que te calculan rápida y eficientemente complejas estructuras. Sin embargo, existen pocas herramientas para esos cálculos monótonos y tediosos que el calculista necesita cuando debe justificar algo o simplemente calcular alguna estructura que se sale de los estándares de los grandes programas de cálculo.

LOGO COMBINADOR

El objetivo de este programa de carácter educativo es simple, pero no por eso algo sencillo: elaborar las distintas combinaciones de acciones en el cálculo de estructuras según las normativas españolas y europeas (EHE-08, EAE, CTE, IAP-11, IAPF-07, EC-1…) y luego poder imprimirlas en un informe o exportarlas a Excel o a Sap2000. Soporta todo tipo de incompatibilidades entre cargas, incluso los tediosos grupos de cargas de la IAP-11.

Para poder descargarlo hemos creado una nueva área en nuestro blog. En la pestaña de “Descargas” podéis pinchar en “Software” (también pinchando aquí). Allí pondremos los programas que iremos creando (que esperamos sean unos cuantos).

DESCARGA COMBINADOR

Cálculo de Soil Nail Walls o Muros Anclados con Hormigón Proyectado

Para estabilizar un talud existen varios tipos de muros que pueden ser utilizados. Uno de ellos son los Muros Anclados con Hormigón Proyectado o Soil Nail Walls.

Soil Nail Walls

Se trata de un muro compuesto por una capa de 10 a 12 cm de hormigón proyectado y malla electrosoldada que conecta varios anclajes al terreno. Estos anclajes suelen estar menos espaciados que en muros anclados de hormigón armado. De hecho, cada anclaje suele tener asignada un área de influencia de entre 1 a 4 m².

PARTES SOIL NAIL WALLS

Esta tipología, frecuentemente usada en todo el mundo, data de primeros de los años 70 del siglo pasado, y sin embargo en España todavía no se dispone de normativa o guía que la regule directamente.

En la “Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera” del Ministerio de Fomento y que podéis bajaros en nuestra sección de “Normativas y Guías”, se pueden encontrar todas las comprobaciones necesarias a realizar para los anclajes pero poco o nada se habla de este sistema contención en general.

En este post os dejo una breve guía de comprobaciones a realizar en el cálculo de esta tipología de muros así como una bibliografía de referencia.

Las comprobaciones que hay que realizar sobre esta tipología de muros son

Pero…la zapata…¿desliza o no?

En este post haremos una comparación entre los distintos coeficientes de rozamiento que consideran las normativas actuales en España y veremos cómo aun así es difícil saber a priori qué normativa es más conservadora o cual es más restrictiva.

Para calcular/comprobar una zapata a deslizamiento únicamente hay que tener en cuenta algo muy sencillo; que la suma de fuerzas horizontales que la desestabilizan sea inferior a las que la estabilizan con los correspondientes coeficientes de seguridad.

 1

Si tenemos en cuenta zapatas no arriostradas, el equilibrio vendrá dado por:

Cálculo de pozos de cimentación (3ª parte y última)

En posts anteriores, Pozos de Cimentación 1ª parte, así como en Pozos de Cimentación 2ª parte, hablábamos sobre qué criterios se empleaban a la hora de calcular un pozo, y de cómo plantear las ecuaciones de equilibrio para la consideración del pozo como zapata de gran canto.

En este post hablaremos sobre el cálculo del pozo considerado como pilote corto. Al igual que hicimos en el post anterior, haremos dos consideraciones:

Cálculo de pozos de cimentación (2ª parte).

En post anterior “calculo de pozos de cimentación (1ªparte)” habíamos comenzado a hablar sobre qué criterio se empleaba a la hora de calcular un pozo, si como una zapata de gran canto o como un pilote corto.

Para entrar ya en materia, hoy expondremos un resumen de las fórmulas que equilibran el pozo considerado como una zapata de gran canto, tanto para terreno granular como para terreno cohesivo.

Consideraremos las siguientes hipótesis de partida:

Cálculo de pozos de cimentación (1ª parte)

¿Quien no se ha encontrado alguna vez, al calcular una cimentación superficial, que en el solar donde se emplaza la estructura existe un paquete de rellenos con una potencia de 2-3 m donde no era viable cimentar y había que alcanzar el estrato inferior que es el que poseía la capacidad portante adecuada…

…o tal vez una capa de arcillas expansivas donde interesaba empotrar esos 2-3 m para evitar esas variaciones de humedad superficiales y salvar así esas variaciones de volumen del terreno?

La solución al problema no pueden ser zapatas, ya que habría que darles un canto demasiado elevado, pero tampoco pilotaje, ya que el precio podría dispararse.

Recurrimos entonces a una solución intermedia… ¡pozos de cimentación!

pozo

Perfecto, ya le hemos solucionado la papeleta a nuestro cliente planteando una cimentación semiprofunda. Pasemos a calcularlos. Veamos qué dice la norma…!!!!????

¿Nada?

Cómo calcular un Pilote ante Cargas Cíclicas

Calcular un pilote ante una carga estática de compresión en cabeza es fácil, solo ha de cumplirse que el cociente entre la carga de hundimiento Qh y la carga de compresión actuante sobre el pilote Q, sea mayor que un cierto valor denominado coeficiente de seguridad:

FA

Calcular un pilote ante una carga estática de tracción en cabeza es igualmente sencillo. De la misma manera, hay que comprobar que la carga de arranque Ta entre la carga de tracción actuante sobre el pilote Q, sea mayor que un mínimo coeficiente de seguridad:

 FB

Me guardo para un futuro post un compendio de las diferentes normativas que hay en España (CTE, Guía de Cimentaciones de Carretera y ROM) para calcular estas Qh y Ta y saber qué coeficientes de seguridad hay que tener en cuenta.

Para este post voy a exponer cómo proceder cuando además de una carga Q en cabeza del pilote tenemos un incremento de carga ΔQ cíclica, es decir, a veces tenemos Q+ΔQ y otras veces Q-ΔQ (en número de ciclos grande, claro).

PILOTE

Éste fenómeno se suele dar en obras marítimas donde las cargas suelen venir por acciones marítimas con un marcado efecto cíclico o bien en cimentaciones de maquinaria donde las cargas variables son cíclicas y elevadas respecto a las permanentes. Para ello, voy a describir un método recogido en

Losas Combinadas con Pilotes: economizando la cimentación.

Una de las pocas cosas “buenas” que tiene la crisis (seamos positivos) es que nos obliga a esforzarnos a buscar nuevos métodos y caminos para hacer las cosas de la mejor manera y, sobre todo, de la manera mas económica. Si la labor del ingeniero es hacer lo que cualquier otro puede hacer pero que además funcione, sea seguro e infinitamente mas barato, eso quiere decir que la “crisis” nos obliga a ser “mejores ingenieros”.

Es por ello que os presento las “Losas Combinadas con Pilotes” ó LCP (“Kombinierte Pfahl-Platten Gründung”, KPP en alemán, “Piled Raft Foundation” en inglés ó Losas de Fundación Combinadas con Pilotes, LFCP, en Latinoamérica) que es un tipo de cimentación que, aunque ya se usan en centro Europa desde los años setenta, en España su uso es casi nulo. Es más, cuando hace 4 años tuve la suerte de calcular una en un edificio en Motril (Granada) no conseguí ninguna referencia de ninguna obra anterior en España y creo que desde entonces solo se ha utilizado para la cimentación de un estribo de un pequeño puente en la provincia de Granada (que yo tenga constancia claro).

 

Imagen 1.

¿En qué consiste una LCP? En general,

Apple dejará en cueros a Google Earth

Está a punto de salir una nueva versión de iOS de Apple y se espera una nueva aplicación que literalmente dejará a la altura del betún a Google Earth.

Se trata de una aplicación de mapas de muy alta resolución con unos levantamientos topográficos  de edificios y estructuras que no dejarán indiferentes a nadie.

Para muestra, un botón:

 Aunque no es un tema sobre estructuras, si que puede ayudarnos a encajar una estructura en un terreno o ver las existentes a vista de pájaro.

AGUDELO

Combinación de Acciones en cimentación (ELS)

En contestación a un compañero y de forma complementaria a mi  post anterior (Combinación de acciones en cimentación según la CTE), efectivamente el análisis de cimentaciones completo debe abarcar los estados límite de servicio (ELS), evaluando asientos, asientos diferenciales, giros y demás.

El CTE no deja claro este aspecto, sobre qué acciones del edificio deben considerarse pero todo parece indicar que como las combinaciones de acciones indicadas para ELS no incorporan los γG y γQ, la formulación es la misma.

Por lo tanto distinguimos tres situaciones:

Asiento en superficie tras una pantalla (Parte II)

En la primera parte de este post (puedes verlo aqui) expliqué un método para estimar las deformaciones en la superficie horizontal tras una pantalla y os prometía que os comentaría mas adelante unos cuantos más con nombre y fecha.

Pues bien, aqui os explico los pasos a seguir para estimar dichas deformaciones según el método de Peck, el de Bowles,  el de Clough & O’Rourke y por último el de Hsieh y Ou.

Asiento en superficie tras una pantalla (Parte I)

Hace unos años hice un famoso curso de cálculo de pantallas de una importante universidad de España y de lo poco que aprendí por entonces (que ya no supiera de la bibliografía básica que cualquiera puede tener al alcance de la mano) fue la estimación de forma empírica de la deformación del terreno en el trasdós de las pantallas y así calcular la distorsión y posibles afecciones producidas en estructuras aledañas a la pantallas. Obviamente la mejor manera de calcular estas cosas es con un programa que realice el cálculo de la pantalla con elementos finitos pero lo normal es que utilicemos programas que usen el modelo de Winkler para la pantalla por lo que solo obtenemos los desplazamientos de la pantalla y no la superficie horizontal del trasdós.

Como en todo curso que se precie, debía entregar varios ejercicios que los profesores nos pedían. Ni corto ni perezoso entregue la solución de un problema de estimación de asientos y distorsión de un edificio cercano a una pantalla realizando una sencilla hoja de Excel. Al profesor de turno le gustó tanto que me pidió la hoja para compartirla con los demás alumnos del curso. Yo se la dejé y él la distribuyó a  los demás alumnos. Por lo visto, en los siguientes cursos también se ha seguido distribuyendo  pero con un pequeño cambio: han eliminado mi nombre de la hoja…¡Qué detalle!

Ya puestos en faena, os explico el método que comentan en dicho curso y os adjunto la hoja Excel.

El método consiste en suponer dos hipótesis que se suelen dar en las pantallas:

  1. Que el volumen de tierras desplazada horizontalmente por la pantalla es igual al volumen de tierras asentada en el trasdós de la pantalla.
  2. El volumen del asiento del terreno en el trasdós de la pantalla queda delimitado por una parábola con un máximo a 0.75H de la pantalla y con desplazamiento nulo justo en la pantalla y a 1.5H de ella (siendo H la altura escavada de la pantalla). Por tanto la zona de influencia de los asientos es D=1.5H.

Como sabemos la ecuación de la parábola podemos sacar el volumen V2:

Y si imponemos la condición de la primera hipótesis y despejamos tenemos:

Es decir, que lo que tenemos que hacer para estimar los asientos se reduce a los siguientes pasos:

Paso 1. Predecir el desplazamiento lateral del muro (δh) a través de la realización de análisis de deformación lateral (con los programas comerciales).

Paso 2. Calcular del volumen de suelo desplazado lateralmente (V1).

Paso 3. La deformación máxima vertical viene dada por:

 Paso 4. La ley de deformación de la pantalla puede estimarse como una parábola que llega  a una distancia D=1.5He de la pantalla con el máximo de la deformación a D/2=0.75He. Por lo tanto, la ecuación de la parábola es:

 Lo prometido es deuda y os adjunto la hoja de cálculo que hice por aquel entonces.

 Calculo de asientos Agudelo

En la hoja solo hay que poner la ley de deformación de la pantalla y esta calcula la ley de asientos; además, si ponemos la distancia a la que tenemos los pilares o muros de una estructura aledaña a la pantalla, la hoja calcula la distorsión angular y podemos comprobar si tendremos problemas o no. Recordemos que los límites en la distorsión angular que podemos tener en una estructura según la CTE son: 

 Se supone, tal y como dicen en el curso, que este método es aceptado normalmente por las administraciones…La verdad que no se…a mí nunca me han puesto pegas. Qué lástima que no dijeran en el curso a quien se debe este método… Pero para los que les guste saber de dónde vienen las cosas, en la segunda parte de este post os pondré tres métodos más para la obtención de las deformaciones y estos con su autor y año (las cosas como Dios manda).

Gracias por vuestro tiempo.


¿Quieres ser el primero en leer nuestros artículos?

Déjanos tu nombre y un email válido, y nosotros te avisaremos cuando hayan novedades en Estructurando

Flecha-roja

La verdadera historia del Ábaco de Chadeisson

Leo en varios foros y blog sobre el famoso Ábaco de Chadeisson y no puedo hacer otra cosa que impresionarme lo que habla la gente de oídas… Incluso en algún blog donde se echa bastante bilis sobre el ábaco (respecto a su utilidad) me sorprende que cuenten la historia sesgadamente. ¿Pero cuál es su verdadera historia?

Para el que no conozca este ábaco, comentarle que es un ábaco que te ofrece el coeficiente de balasto horizontal para pantallas sabiendo el ángulo de rozamiento interno y la cohesión. Así, sin más, ni geometría de la pantalla, ni módulos de deformación del terreno o del hormigón de la pantalla…

Conocí el dichoso ábaco hace cosa de unos 6 años, en una página web con un excelente foro que por entonces tenía mucha actividad (que pena que ya esté casi muerto, cosas de la crisis). Publicaron dicho ábaco y fue el pistoletazo de salida para que todo el mundo empezara a utilizarlo. De pasar a tener que “inventarte” el coeficiente de balasto horizontal a considerar (por que los estudios geotécnicos no te daban ese valor y si se lo pedías se hacían los “longuis”), a tenerlo casi en la sopa; todos adorando el ábaco como si fuera… el “ganchoooo”:

¿¿¿Pero de donde viene ese ábaco???? Bueno, por lo visto, en dicha página web lo habían obtenido del Simposio sobre Estructuras de Contención de Terrenos, en el artículo “Aplicación del Eurocódigo EC7 en el diseño de muros de contención” de Marcos Arroyo y José P. Feijóo, publicada por la Sociedad Española de Mecánica del Suelo y Cimentaciones.

Pues nada, uno busca dicho artículo y básicamente se encuentra que se remite a otro artículo de un tal A. Monnet llamado “Module de réaction, coefficient de décompression, au sujet des  paramètres utilisés dans la métothe de calcul élastoplastique des soutènements” y publicado en la  Revista Francesa de Geotech. Nº 65 página 67-62.

Como dice Frankie en su blog “Geotécnia y Arquitectura”, esto se parece al chiste del eclipse en el cuartel (muy buen post, lo recomiendo).

 Me costó un tiempo encontrar el artículo de Monnet. Mientras pasaba el tiempo en mi búsqueda, empezaron a aparecer varias páginas web donde se podía ver la siguiente fórmula llamándola fórmula del ábaco de Chadeisson (esta es concretamente de www.finesoftware.eu):

 

Según finesoftware, esta es la fórmula que da los valores del ábaco de Chadeisson y según ellos Chadeisson la hizo pública en una ponencia de 1961 en “Parois continues moulées dans le sols. Proceedings of the 5th European Conf. on Soil Mechanics and Foundation Engineering,Vol. 2. Dunod, Paris, 563-568″

Uno se pone a pelearse con esta fórmula y observa que de la fórmula no sale nada parecido a lo que el ábaco dice… ¿Qué está pasando? Algo no cuadraba.

 ¡¡Y por fin encuentro el artículo de Monnet de 1995 y todo se aclara¡¡¡ Según dicho artículo de Monnet, resulta que Chadeisson fue un ingeniero que desarrolló un programa informático en los años 60 basado en el modelo de Winkler llamado PAROI 2. Chadeisson, basándose exclusivamente en su experiencia en el cálculo de las pantallas con su programa, propone su famoso ábaco. Este programa y su ábaco se hacen entonces muy usados por los ingenieros franceses. O sea, que nada de fórmulas, solo un ábaco basado en la experiencia Chadeisson para dar salida a su software.

 Resulta que Monnet, en su artículo, es el que propone entonces la siguiente fórmula: 

Como veis, es la que dice finesoftware que es de Chadeisson (me parece que tiene razón Frankie con lo que aquí también hablan de oídas). ¡Cuidado que la fórmula de la página de finesoftware tiene una errata con las potencias!

 ¿Y que hace nuestro amigo Monnet con su fórmula? Pues compara los resultados de su fórmula con los del ábaco de Chadeisson. Buena práctica: invéntate una fórmula y refútala con un ábaco que se está usando mucho en la vida cotidiana, así conseguirás que se hable de tu fórmula. ¿Y se parece lo que sale de la fórmula con el ábaco? Pues… si te pongo los resultados en distintas páginas del artículo, con los ejes cambiados de posición, a distinta escala y girados 90º  pues parece que si… 

 Pero siendo malicioso… si superponemos los resultados de Monnet sobre el ábaco tenemos esto: 

 Hombre… ahora es cuando se ve que van al mismo rollo pero iguales, iguales…  no son.

Ahora viene la segunda pregunta. ¿Qué valores ha tomado Monet para que se parezca su fórmula al ábaco de Chadeisson? Pues Monnet índica en su artículo que lo hace para un muro de 0,80 m de espesor y un módulo de deformación del hormigón de 2*10^7 KPa parecido a lo que hacía Chadeisson en los años 60.

Cabe entonces hacernos esta pregunta: si la fórmula de Monnet es correcta, con las pantallas que hacemos hoy en día, de 0,50 m de espesor a 0,80 m y con hormigones altamente armado con los que podemos llegar a 3*10^7 KPa para el módulo de deformación ¿tiene sentido que sigamos usando el ábaco de Chadeisson? Pues tomándonos la molestia de hacer el ábaco para estas circunstancias tenemos lo siguiente:

Esto para densidades del terreno 20 KN/m³. Para espesores diferentes a 0.5 m y 0.8 m se podría interpolar (siento lo de las unidades, es para poder hacer comparaciones facilmente). No parece que los valores cambién mucho de los del ábaco de Chandeisson… ¿ó si? Además, ¿somos conscientes que dichos valores son para empujes pasivos según la ley de Caquot-Kérisel y aquí en España utilizamos software con la ley de Rankine?

 ¿Todo esto sirve para algo? Pues resulta que otro artículo (esto llega a ser obsesivo) titulado “Numerical analysis of displacements of a diaphragm wall”, de M. Mitew (publicado en Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 5th International Symposium TC28. Amsterdam, the Netherlands, 15-17 Junio 2005 y editado por K.J. Bakker, A. Bezuijen, W. Broere y E.A. Kwast) hacen una comparativa de los resultados de desplazamientos en pantallas entre diversos métodos (con métodos de elementos finitos y métodos de winkler) y resulta que los métodos que utilizan los valores de la fórmula de Monnet obtienen desplazamientos que se quedan por debajo de las realmente medidas… Claro que yo incidiría que Mitew en su artículo, al no tener la cohesión del terreno de su ejemplo, ni corto ni perezoso utiliza en su lugar la resistencia al corte sin drenaje, como si tuviera que ver ese valor algo con los parámetros efectivos del terreno… Muchas prisas para desprestigiar un método y vanagloriar otro diría yo…

Total que mucho de oídas y nada claro. Por lo menos ya sabemos de donde viene el ábaco y cual es su alcance… Es obvio que utilizar coeficientes de balasto para calcular pantallas no es lo mejor; es una burda aproximación, pero aún asi es rápido, limpio y las pantallas así calculadas (casi el 100% en España y en Francia) no presentan grandes fallos (repecto a su calculo) si se estima convenientemente el coeficiente de balasto a considerar. Por tanto ¿Cómo estimamos el coeficiente de balasto? Bueno eso lo dejo para un próximo post en el que hablare de las mil y una formas para estimar este valor.

AGUDELO