Category Archives: Estructuras curiosas

¿Cuántos espaguetis necesitas para levantar un coche?

No. Con la pregunta no nos referimos a la ingesta de hidratos de carbono que necesitas para ser capaz de levantar un vehículo. No. La pregunta es más literal. Te preguntamos por la cantidad de espaguetis que necesitarías para que con ese manojo se pudiera soportar el peso de un coche.

Por si no tienes la más remota idea, los profesores de la Escuela Politécnica Superior de la Universidad CEU San Pablo de Madrid, no sólo lo han calculado, sino que lo han ensayado con un coche real y te lo muestran en el siguiente vídeo:

¿Sabes cuál fue el primer invento en hormigón armado?

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». Sin embargo, pocos meses después se patentó el primer invento realizado exclusivamente de hormigón armado. Y este invento puede que te desconcierte un poco. 😉

Fue el francés Joseph-Louis Lambot quien después de realizar varias pruebas con mortero y barras de acero y malla de gallinero para construir pequeños depósitos de agua y bebederos, construye y patenta el primer invento realizado en hormigón armado, el cual presentó en la Exposición Universal de París de 1855. Se trató de un pequeño

El secreto del Puente de Alcántara

En este post queremos hacernos eco del reciente descubrimiento sobre el Puente de Alcántara, gracias al trabajo de los investigadores del Consejo Superior de Investigaciones Científicas (CSIC).

Siempre he admirado las construcciones históricas. Solo hay que pensar en cómo estaría cualquiera de las estructuras que actualmente proyectamos de hormigón, acero o madera tras el paso de 18 siglos!!. Y sin los avances que tenemos ahora!!!

Pues eso es lo que tiene el icónico puente Romano de Alcántara (Cáceres). Fué construido nada más y nada menos que en el siglo II d.C., en la época del Emperador Trajano.

Y si esa friolera de años ya de por sí impresiona, los investigadores del CSIC, van y descubren que

Entrevista a Juan José Arenas de Pablo

Juan José Arenas de Pablo (Huesca, 1940), es Doctor Ingeniero de Caminos, Canales y Puertos por la Universidad Politécnica de Madrid. Fue profesor de Hormigón Pretensado en la Escuela de Caminos de Madrid entre los años 1971 y 1976, y desde entonces, catedrático de Puentes en la Escuela de Caminos de Santander, en la Universidad de Cantabria. Fundó el gabinete de ingeniería APIA XXI (1988) radicado en Santander y la ingeniería de diseño Arenas & Asociados (1999).

Su actividad profesional ha sido incesante desde el mismo año en que acabó la carrera (1963), trabajando en proyectos de puentes y edificios singulares.

En primer lugar, muchas gracias por atender nuestra petición de entrevistarle. Sabemos del gran esfuerzo que ha hecho para poder atendernos y solo podemos reiterarle nuestro agradecimiento.

Si le parece, empezaremos hablar un poco de usted antes de entrar en aspectos más técnicos de sus obras. Y después, si no tiene inconveniente, le preguntaremos por su reciente premio, Ingeniero Laureado por la Real Academia de Ingeniería de España.

Nos gusta comenzar nuestras entrevistas preguntado sobre los motivos que hicieron elegir la ingeniería a nuestros entrevistados. Cuéntenos brevemente cómo fue su infancia y adolescencia: qué tipo de educación recibió y por qué decidió ser Ingeniero de Caminos.

En primer lugar gracias por esta entrevista. Voy a intentar responder a vuestras preguntas de la mejor

Entrevista a Naeem Hussain

Naeem Hussain es uno de los más prestigiosos ingenieros estructurales contemporáneos. Obras tan relevantes como el Puente de Oresund entre Suecia y Dinamarca, el Puente Stonecutters en Hong Kong o el Nuevo Puente de Forth en Edimburgo (llamado Queensferry Crossing) han sido concebidas y desarrolladas por este ingeniero y arquitecto, Líder Global de Ingeniería de Puentes de la empresa multinacional Arup, en la que trabaja desde 1969.

Ingeniero estructural por la Universidad de Lahore (Pakistán), Arquitecto por la Architectural Association School of Architecture de Londres y con un postdoctorado en Estructuras de Hormigón por el Imperial College de Londres, ha recibido galardones tan prestigiosos como la Medalla de Oro Prince Philiph (2012), o el IStructE Supreme Award 2010 (por el diseño del puente Stonecutters).

naeem-hussain-1

En Estructurando.net nos enorgullece engrosar la lista de entrevistados con el gran Naeem Hussain, quien se prestó desde el primer momento encantado de responder a nuestras preguntas.

Es un honor estar con usted aquí, muchas gracias por venir. Nos gustaría empezar  preguntándole por su trayectoria, ya que usted nació en Pakistán y después estudió en Londres. ¿Cuándo y dónde decidió dedicarse a la ingeniería de puentes?

En realidad nací en

Toperas: las estructuras para parar un tren

Hace poco me he visto en vuelto en el cálculo de una de las estructuras mas curiosas de las que han pasado por mis manos en un buen tiempo. Se trata del cálculo de unas “toperas”, las estructuras encargadas de parar el tren cuando todo falla. Cosa que pasa más a menudo de lo que nos creemos:

accidente_topera_salamanca

Accidente en Salamanca en el 2009. Tren sobrepasa la topera.

En este post os explico cómo calcular la Fuerza de Impacto a tener en cuenta en el cálculo de una topera, qué comprobaciones hay que realizar al cuerpo de la topera y cómo plantear el cálculo del armado si se pretende hacerla de hormigón.

Básicamente una topera debe resistir una sola clase de acción, la de

Cuando el sonido diseña nuestra estructura

Quienes hayan seguido mis post desde hace tiempo se habrán dado cuenta que me gusta encontrar condicionantes funcionales de la obra que implican una forma en concreto de la estructura. Hoy le toca a un condicionante que a más de uno le sorprenderá: el sonido.

opera_de_sydney

Fuente: Wikipedia, autor: Joseolgon

Para recapitular, os pongo un cuadro resumen de los artículos en los que hablo del tema, señalando el condicionante, la forma especial de la estructura y el post:

Condicionante

Forma

Post en el que hablamos

Turbulencia de un flujo Curva Jukovski Jukovski, una curva interesante para usar en una estructura
Erosión por flujo Curva Creager Creager, otra curva interesante para usar en una estructura
Peso propio de la estructura Estructura antifunicular Gaudí, el funicular de cargas y un software para calcular en 3d
El Sol Orientación y ciertas dimensiones de la estructura ¿Puede el Sol condicionar la forma de una estructura?
Peso propio y viento Curvas exponenciales ¿Por qué la Torre Eiffel tiene la forma que tiene?
Sobrecargas de uso y peso propio Estructura isotensional o antifunicular Cuando el Cálculo es la herramienta del Diseño: el Puente sobre el Basento de Sergio Musmeci

Cómo podréis apreciar, hablar de todo esto es casi salirse del concepto puro de cálculo de estructuras en sí y entrar en el concepto de diseño funcional. Unas veces, esta delgada línea que divide estos dos conceptos es mas clara que otras. Pero a veces, como el caso que os cantaba de la Torre Eiffel o de las estructuras antifuniculares, la línea es más difusa y, por qué no, “permeable”.

En el post de hoy vamos a ofreceros un ejemplo más de un condicionante, cuando menos, tan singular como los que os venimos contando. Cuando el sonido diseña nuestra estructura: sala de conciertos.

Cuando se diseña una sala de conciertos, el principal objetivo es

Citicorp Center, el rascacielos que pudo colapsar en la Gran Manzana

En el post de hoy vamos a contaros una historia que en más de una facultad se suele mostrar como ejemplo de buena praxis profesional en el mundo de la ingeniería estructural. Se trata de la historia de cómo un rascacielos de 279 m de altura, la torre Citicorp Center en Nueva York, estuvo a punto de colapsar y de cómo gracias a dos casualidades y al buen hacer de un ingeniero, se evitó la catástrofe.

citigroup_center

Lo “gracioso” del  tema es que los neoyorkinos tardaron 18 años en enterarse de que uno de sus rascacielos se les podía haber desplomado encima.

En este post os explicamos en qué consistió el problema estructural, cómo se descubrió el fallo después de que el rascacielos llevara un año puesto en servicio y cómo se procedió a su reparación “in extremis” justo cuando se aproximaba un huracán a la ciudad.

Para empezar a contar bien esta historia hay que retroceder hasta prácticamente

¿Por qué la Torre Eiffel tiene la forma que tiene?

Construida para la Exposición Universal de 1889 en conmemoración del centenario de la Revolución Francesa, la Torre Eiffel se proyectó como un ejemplo de progreso y un logro de la ciencia y la tecnología del siglo XIX.

forma_de_la_torre_eiffel

Su silueta estructural quizás sea una de las más fácilmente reconocibles del mundo. Pero, ¿sabes por qué tiene la forma que tiene?

En este blog hemos hablado más de una vez cómo factores externos pueden determinar la forma nuestra estructura. Ya hablamos como las turbulencias de un flujo podían hacerlo (en Jukovski, una curva interesante para usar en una estructura), o cómo, para evitar una erosión excesiva, podíamos optar por formas específicas (en Creager, otra curva interesante para usar en una estructura). También hablamos de las estructuras isotensionales que nos ahorran material (Gaudí, el funicular de cargas y un software para calcular en 3d), o incluso vimos como nuestro astro rey podía tener mucho que decir en la forma de nuestra estructura (en ¿Puede el Sol condicionar la forma de una estructura?)

En este post te explicaremos cuál fue el motivo que llevó, en junio 1884, a los dos ingenieros principales de la empresa Eiffel, Émile Nouguier y Maurice Koechlin, a elegir la forma actual de la Torre Eiffel.

Timelapse constructivo de la estación de autobuses Donostia /San Sebastián

Tras 3 años de obras y 32 millones de euros de inversión bajo la fórmula de concesión, la Terminal de autobuses de Donostia/San Sebastián ya es una realidad.

En este post os dejamos un timelapse de la ejecución de esta obra que se explaya en el proceso constructivo de la parte estructural.

Se trata de una infraestructura muy demandada socialmente y que ha sido diseñada para satisfacer las necesidades de los usuarios. Los números son: casi 25.000 m2 de superficie, 21 dársenas (9 adaptadas para minusválidos), 400 plazas de parking, 8.000-12.000 pasajeros diarios, 200 cámaras de seguridad e información a tiempo real.

Esta información es la que comúnmente se comenta, sin embargo, vamos a ofreceros, además del vídeo, otro punto de vista, las entrañas de la estación, es decir, la estructura portante y el procedimiento constructivo.

Cinco libros sobre puentes que te recomendamos para estas vacaciones

Como ya va siendo una tradición, antes de zambullirnos en nuestras merecidas vacaciones, os dejamos una lista de libros sobre estructuras que pueden amenizar vuestras tardes de vacaciones.

cinco libro de puentes para estas vacaciones

La idea es que paséis leyendo un rato ameno sobre lo que más nos gusta, las estructuras y en este caso en particular, sobre puentes.

El año pasado, os dejamos un post con cinco grandes propuestas: “Cinco libros de estructuras que te recomendamos para este verano” sobre estructuras en general y en este post os dejamos otras tantas pero con el foco puesto en los puentes. Espero que os guste.

Cómo calcular cimentaciones anulares

Un caso especial que se suele dar con frecuencia en depósitos o torres es que su zapata sea de forma anular con simetría de revolución.

cimentacion anular

En este caso, el cálculo de esfuerzos para armar la zapata no es inmediato y no suele venir recogido en los programas de cálculo convencionales.

En este post os dejamos una metodología para poder obtener los esfuerzos de una zapata anular y así poder armarla convenientemente.

El primer paso es calcular las

Un estadio vibrando y cómo calcular las frecuencias fundamentales de una placa

El pasado 19 de mayo un vídeo se hizo viral en las redes sociales mostrando un estadio “vibrando” literalmente debido a que los aficionados saltaban al unísono haciendo entrar la estructura en resonancia.

Se trata del Commerzbank-Arena, en Alemania; el estadio del club deportivo Eintracht Frankfurt que participa en la Bundesliga. Por lo visto, el club se jugaba la permanencia en la categoría y la afición lo dio todo 😕 .

He visto en las redes que hay mucha gente que se ha preguntado si estas cosas, el salto de personas al unísono, se tienen en cuenta en el cálculo de las estructuras.

La respuesta es que sí. Se trata de un Estado Límite de Servicio llamado Estado Límite de Vibraciones.

En general, para cumplir el Estado Límite de Vibraciones debe proyectarse la estructura para que sus frecuencias naturales de vibración se aparten suficientemente de ciertos valores críticos.

En este post vamos a repasar esos valores críticos, deducir la frecuencia que tenía la acción de los aficionados germánicos botando (por cierto, ¿esa no es la canción de Pipi CazasLargas? 😯 ) y de paso os dejo un método simplificado para calcular rápidamente la primera frecuencia fundamental de un forjado.

Exposición sobre Los Puentes de Fábrica

La Biblioteca de la Escuela de Caminos, Canales y Puertos de Madrid (UPM) pone a disposición de los interesados sus más selectos tesoros bibliográficos en formato digital a través de la Colección Digital Politécnica.
Par dar más relevancia a esta iniciativa, la Escuela de Caminos, va a organizar un ciclo de exposiciones y conferencias en torno a la ingeniería civil y así aprovechar para exponer los valiosos materiales bibliográficos que posee la Biblioteca.
puente de fabrica

Fuente: École de Ponts et Chaussées

La primera de las exposiciones que abre el ciclo y que se inaugura hoy, versa sobre los puentes de fábrica, exponente de las habilidades de los ingenieros de otras épocas cuyo fruto, el puente de piedra o de ladrillo, es de gran valor utilitario, estético y patrimonial.
Para esta primera exposición el comité organizador ha seleccionado de entre los fondos de la Biblioteca varias obras representativas sobre la construcción este tipo de puentes que abarcan

La construcción del viaducto de Millau: una proeza técnica

El viaducto de Millau (Francia) se puede calificar como una obra maestra desde muchos puntos de vista. Este viaducto es el puente de carretera atirantado más alto del mundo que se ubica en el departamento de Aveyron en Francia y que atraviesa el río Tarn.

Viaducto de Millau

Su preparación duró 14 años y su construcción 3; empezó en diciembre de 2001, fue inaugurado el 14 de diciembre de 2004 y abierto al público el 16. Este puente está considerado como una obra mayor del siglo XXI, llevado a cabo por la empresa francesa Eiffage y concebido por el ingeniero civil francés Michel Virlogeux y el arquitecto británico Lord Norman Foster. Constituye el eslabón más espectacular de la autopista A75 Clermont-Ferrand-Béziers. Tiene una altura de 343 metros y se extiende sobre 2 460 metros. Desde su apertura, más de 50 millones de automovilistas y vehículos pesados lo cruzaron.

Una de las características más destacables del viaducto son los obenques

Una excelente opción para soportar levantamientos en cimentaciones de estructuras ligeras

piloedre 1

Uno de los aspectos más interesante de PILOEDRE es su capacidad de soportar levantamientos. Abajo tenéis las cargas máximas de recomendadas (en servicio) para diferentes tipologías de terreno.

tabla

PILOEDRE apenas pesa 50 kg (pieza de hormigón y tubos), se coloca en 10’ con un operario y herramientas manuales pudiéndose cargar una vez finalizada la instalación. Todo lo anterior es equivalente, por ejemplo en terreno blando, a un dado de hormigón de 1 m3 con todo lo que implica su colocación.

A las capacidades anteriores debe añadirse que los PILOEDRES pueden desmontarse y reutilizarse.

Se trata de una buena alternativa técnica a valorar cuando es necesaria capacidad resistente a levantamiento y se dan circunstancias como: problemas de acceso, necesidad de desmontaje, espacio reducido, necesidad de cargar rápido, etc.

Una pregunta obligada es:

¿Cómo hemos llegado a determinar lo que soporta un PILOEDRE frente a levantamiento?

La respuesta es sencilla, haciendo pruebas de carga y modelaciones numéricas.

Aplicación inusual de un programa de cálculo de estructuras: estudio de una cuerda de guitarra

Normalmente cuando se piensa en un programa de cálculo de estructuras, intuitivamente lo asociamos al análisis de esfuerzos en puentes o edificios. En este post vamos sin embargo a explorar una de las posibilidades que ofrece este tipo de software (concretamente SAP2000) más allá de lo que es estrictamente el cálculo de esas grandes construcciones.

Guitarra y frecuencia

En concreto, abordaremos el estudio de algo tan pequeño y bello como es la vibración de la cuerda de una guitarra. Ello nos permitirá servir de base para entender mejor el fenómeno físico, y de paso conocer el modo en que intervienen las diferentes variables que lo controlan.

La UPV desarrolla un ladrillo antisísmico

Investigadores del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València (UPV) han desarrollado un nuevo dispositivo cuyo diseño y componentes permiten aislar sísmicamente la tabiquería del resto de la estructura del edificio.

Ladrillo Antisísmico

Estructurando ha podido hablar con Francisco J. Pallarés Rubio, Dr. Ing. Caminos, Canales y  Puertos, miembro del equipo que ha ideado el sistema, y nos ha contado en qué consiste este “ladrillo antisísmico”, cómo funciona y cómo puede ser aplicado a las obras actuales. Además nos ha facilitado vídeos y fotos de este sistema en acción en una simulación recreada en el laboratorio.

El nacimiento de un nuevo estado límite de servicio

Cuando desarrollas productos innovadores como  piloedre® uno suele tener la sensación de adentrarse en territorios desconocidos, entonces siempre va bien tirar de tu mochila técnica para intentar encontrar herramientas que te iluminen algo el camino.

Piloedre cabeza

Pues eso, mirando en mi mochila me encontré el concepto de “ Estado Límite de Servicio” el cual, parafraseando la wikipedia  ( de esto también sabe), es “Un Estado Límite de Servicio (ELS) es un tipo de estado límite que, de ser rebasado, produce una pérdida de funcionalidad o deterioro de la estructura, pero no un riesgo inminente a corto plazo. En general, los ELS se refieren a situaciones solventables, reparables o que admiten medidas paliativas o molestias no-graves a los usuarios

Entonces vi la luz, un nuevo ELS había nacido.

Cierre del arco del Viaducto del Tajo

“ARS VBI MATERIA VINCITVR IPSA SVA”

Extracto de la inscripción que figura en el Templo aledaño al Puente de Alcántara sobre el Río Tajo, construido en el año 106 d. C.

El pasado miércoles 11 de noviembre tuvo lugar el hormigonado de la dovela de clave del arco del Viaducto del Tajo, estructura con la que la línea de alta velocidad Madrid-Extremadura franquea el paso sobre el río más largo de la Península Ibérica en la cola del Embalse de Alcántara.

Tenemos video a vista de dron del acontecimiento:

El arco de 324 m de luz está firmemente imbricado en la abrupta garganta que le sirve de marco, haciendo gala de unas elegantes proporciones que, pese a la monumentalidad de su escala (70 m de altura o flecha, sección transversal de 12 x 4 m en arranques y 6 x 3.5 m en clave), lo dotan de

¿Es verdad que la tela de araña es más resistente que el acero?

Últimamente he visto en varios medios, la afirmación de que la tela de araña es mucho más resistente que el acero. Hasta más de 5 veces he llegado a leer…

Más de un artículo hay por ahí donde se afirma que una tela de araña con hilos del grosor de un lápiz podría ser capaz de parar de golpe a un avión a reacción como un Boeing 747 o que la escena de la película de Spiderman donde el héroe es capaz de parar con su tela un tren descontrolado es totalmente plausible.

Tela de araña y acero

Pues bien, ya que estamos en un blog que se dedica a las estructuras y la resistencia de materiales, en este post me he propuesto a responder a la pregunta: ¿Qué hay de verdad en lo que dicen sobre la tela de araña y sus bondades frente al acero?

Ya está a la venta el Kit Mola Estructural

Ya os hablamos hace un tiempo del Kit Mola Estructural (“Un juguete para los que nos gustan las estructuras“) y desde entonces no hemos parado de recibir comentarios y mails preguntando sobre su coste y sobre la fecha de salida a venta.

Así que nos pusimos en contacto con el autor de esta idea, el brasileño Márcio Sequeira de Oliveira, y nos comentó que en cuanto saliera a la venta nos avisaría. Y así ha sido: El Kit Mola Estructural ya está a la venta.

Para los que no hayan leido el post anterior, se trata de un modelo interactivo que simula estructuras reales. Con elementos sencillos, de pequeñas dimensiones, se puede experimentar, estudiar y enseñar el comportamiento de las estructuras. Se puede montar, visualizar y sentir las estructuras en tus propias manos:

Para los interesados, os dejamos el enlace de la hoja de pedido, con un precio de

Inauguración del Nuevo Puente de Cádiz

El pasado 24 de septiembre es una fecha que quedará registrada en los anales de la Ingeniería española por derecho propio. Tras 2 años de proyecto y 8 de obra, la inauguración del Nuevo Puente de Cádiz supuso un digno colofón para la consecución de uno de los mayores hitos constructivos de la historia de nuestro país.

Una cobertura mediática sin precedentes consiguió, por una vez, situar a la Ingeniería en la cabecera informativa nacional, prodigándose en detalladas cifras, variopintas comparaciones de la nueva infraestructura con iconos de referencia mundial, entrevistas, conexiones en directo, etc.

Estructurando.net estuvo allí, y en el presente post os describimos nuestras impresiones de un día tan señalado junto algunos datos/imágenes y vídeos de interés del puente.

puente de cadiz 1

Fotografía del Nuevo Puente de Cádiz en el día de su inauguración oficial. Fotógrafo: Carlos Manterola Jara. Fuente: www.cfcsl.com

La obra se encontraba en perfecto estado de revista, y el viaducto atirantado se recortaba

La presa que no nos enseñó nada

Resulta más que inquietante y doloroso ver cómo se crea una gran infraestructura y luego no se puede aprovechar por motivos diversos (técnicos, económicos, politicos…).

En España, ocurre en demasiadas ocasiones. Disponemos una amplia gama de grandes obras (aeropuertos, presas, centrales nucleares, autopistas…) que están absolutamente en desuso tras su construcción. Y el tema no es algo exclusivo del último boom de la construcción.

Este verano tuve la ocasión de visitar Cabo de Gata y me encontré con uno de estos casos. Volviendo a Murcia, mi tierra natal, me detuve a visitar Níjar, donde me enteré de la existencia de un embalse abandonado.

presa

 

Efectivamente, a 6 km del pueblo se encuentra el “embalse” de Isabel II, también conocido como Pantano de Nïjar.

La obra se comenzó a construir a mediados del año 1800, con una inversión de

Cinco libros de estructuras que te recomendamos para este verano

Ya estamos en otro CALUROSO verano. Sobre todo por la parte que nos toca (zona de Murcia y Granada), donde se pueden freír huevos en el capó del coche cuando lo tienes aparcado al sol.

Cinco libros de estructuras que te

Como último post, antes de vacaciones, nos despedimos (volvemos en septiembre) recomendando alguna lectura estival. Así que busca un sitio fresquito, relájate y acompáñate de un de estos buenos libros!!!

Estructurando en la conferencia Multi-Span Large Bridges en Oporto

La Facultad de Ingeniería de la Universidad de Oporto organizó del 1 al 3 de julio unas jornadas sobre la Ingeniería de los Grandes Puentes en la ciudad del Duero, a cuyas orillas se reunieron más de 300 participantes procedentes de más de 40 países. Las anunciadas conferencias de algunos de los más prestigiosos ingenieros del mundo (Michael Virlogeux, Jiri Strasky, Naeem Hussain, Javier Manterola, Akio Kasuga o Francisco Catao Ribeiro), el sugestivo diseño del resto del programa y el embelesador embrujo de la ciudad fueron sin duda un poderoso gancho que atrajo a conferenciantes, patrocinadores y empresas, superando ampliamente las expectativas de la organización.

e1

Cartel anunciador de la Conferencia. Foto: Estefanía Casares.

ESTRUCTURANDO se estrenó en el evento como medio oficialmente acreditado, circunstancia que sin duda agradecemos a la organización, pero sobre todo a nuestros queridos lectores, que día a día, post tras post, hace crecer y dota de sentido esta modesta a la par que desacomplejada propuesta bloguera. Tuvimos ocasión de entrevistar a varias personalidades del mundo de la ingeniería, lo que nos ha animado a abrir una nueva sección monográfica dedicada al noble arte del interviú y que inauguraremos pronto (a la vuelta del verano).

En este post os dejamos algunas impresiones que tuvimos sobre los ponentes y un vídeo de una “keynote” para abrir boca sobre nuestros futuros post nacidos de esta experiencia: monográficos de ponencias, entrevistas…

Piloedre, un nuevo tipo de cimentación para estructuras ligeras

Cuando me enteré que este nuevo sistema de cimentación para estructuras ligeras lo había desarrollado Juan José Rosas, uno de los blogueros más punteros y curtidos de la blogosfera ingenieril, no dudé en ponerme en contacto con él para que me contara, de primera mano, de qué se trataba.

Piloedre

En cierto sentido me siento en deuda con Juan José por que leer blogs como el suyo, Geojuanjo, fue uno de los principales estímulos para crear el nuestro.

Así que, dado que Juan José me ofreció multitud de información sobre el invento, la existencia de esa sentimental deuda que os comento y, sobre todo, porque el sistema es de lo más interesante en cimentaciones que he visto hace tiempo, os propongo el post de hoy. Un post donde os describo el sistema, explico para qué sirve y cómo se instala, sus ventajas frente a otras soluciones y, lo más interesante, cómo se calcula.

Entrevista a D. José Luis Manzanares Japón

D. José Luis Manzanares Japón (Sevilla, 1941) es Doctor Ingeniero de Caminos, Canales y Puertos, catedrático de Estructuras de la Escuela Técnica Superior de Arquitectura de Sevilla, académico de la Real Academia de Ciencias de Sevilla y de la Academia de Ciencias Sociales y de Medio Ambiente de Andalucía, fundador y director de AYESA, unas de las ingenierías más importantes del país.

Hoy nos acoge en su despacho, en la cuarta planta del edificio de AYESA, para que le entrevistemos.

JOSE LUIS MANZANARES JAPÓN

En primer lugar, muchas gracias por atender nuestra petición de entrevistarle. Es todo un honor.

Si le parece, empezaremos hablar un poco de usted antes de entrar en aspectos más técnicos de sus obras. Y al final, si no tiene inconveniente, hablaremos de su vertiente más social, de temas candentes que afectan a nuestro gremio en particular y a la sociedad española en general.

Cuéntenos brevemente cómo fue su infancia y adolescencia: qué tipo de educación recibió y por qué decidió ser Ingeniero de Caminos.

Los seis puentes mas ingeniosos de Leonardo da Vinci

Leonardo da Vinci (1452-1519), el genio renacentista, fue a la vez pintor, anatomista, arquitecto, artista, botánico, científico, escritor, escultor, filósofo, ingeniero, inventor, músico, poeta y urbanista.

Los puentes de Leonardo Da Vinci

En el post de hoy vamos a fijarnos es su faceta como ingeniero civil, más concretamente en sus puentes. Comentaremos 6 de esos puentes, mostrando sus bocetos en manuscritos y códices, que quizás sean los más llamativos e ingeniosos que diseñó a lo largo de su prolífica vida.

Tableros prefabricados hiperestáticos

La prefabricación es un concepto que se ha visto desgraciadamente apropiado por la industria del hormigón aunque, evidentemente, plantea un significado mucho más amplio que circunscribirlo exclusivamente a un solo material. La prefabricación habla de industrializar, de poder adelantar trabajo en entornos adecuados (plantas, talleres, etc.) antes de llegar a la obra y, consecuentemente, minimizar el número de operaciones a realizar in-situ o, al menos, ejecutar en obra aquellas que puedan resultar más simples. Es por eso que algunos tratamos de huir del término prefabricación (perniciosamente vinculado al hormigón) para referirnos al pre-ensamblaje, para dar cabida a otros compañeros de viaje como el acero (en sus múltiples manifestaciones), la madera, etc.

PUENTE PREFABRICADO HIPERESTÁTICO

Puente prefabricado hiperestático. DOL – Imagina

Después de esta declaración de intenciones (absolutamente necesaria como expiación personal) pasamos a comentar sucintamente una de las tipologías más interesantes de tableros prefabricados (¡Sí, de hormigón!) de puentes. Se trata de las vigas continuas o vigas hiperestáticas. En un momento en el que la ingeniería española que ha estado en contacto (directo o tangencial) con la industria prefabricada trata de exportar el know-how adquirido en los últimos 25 años, la alternativa de los tableros hiperestáticos adquiere especial importancia.