Author Archives: José Antonio Agudelo Zapata

7 tipos de Apps imprescindibles para un Ingeniero de Estructuras

En el post de hoy os presentamos 7 tipos de aplicaciones para tu Smartphone que deberías tener si realmente te gusta el Cálculo de Estructuras.

Se trata de una selección de herramientas que creemos que os pueden resultar treméndamente útiles (sobre todo si estamos fuera de la oficina), entretener en vuestro tiempo de ocio, e, incluso, enseñaros unas cuantas cosas.

Hemos preferido hablar de “tipos” como conjunto de aplicaciones y no sólo hablar de una aplicación en concreto que realice tal o cual función, porque el mercado de aplicaciones es ya tan amplio que preferimos daros algunos ejemplos alternativos para una misma labor.

Comencemos

Manuales y hojas Excel para el cálculo de uniones atornilladas

En el post de hoy os dejamos un material imprescindible a tener en vuestra biblioteca de estructuras metálicas: los manuales de uniones atornilladas tanto frontales como laterales que elaboró CatedrAcero y publicó APTA.

Además de dejaros los enlaces de descarga de estos dos maravillosos libros, os dejamos también las hojas de cálculo que se crearon para poder hacer práctico el cálculo de este tipo de uniones.

Cómo calcular placas o vigas de anclaje para pantallas en terreno cohesivo

En el post de la semana pasada, vimos cómo calcular placas o vigas de anclajes para pantallas cuando el terreno era arenoso, es decir, cuando el terreno tenía un ángulo de rozamiento interno alto y no tenía cohesión (Ø y C=0).

En el post de hoy vamos a ver cómo proceder cuando tenemos un terreno cohesivo, es decir, cuando podemos asumir que el ángulo de rozamiento interno del terreno es Ø=0º y disponemos de cohesión no drenada C.

En primer lugar, hay que determinar el tipo de rotura que producirá nuestra

Cómo calcular placas o vigas de anclaje para pantallas en terreno arenoso

Cuando pensamos en apuntalar una pantalla, nos suele venir a la cabeza usar tirantes con inyección en la punta (ya explicamos cómo predimensionar estos anclajes en “Cómo calcular anclajes al terreno tipo Dywidag o Gewi”). Pero a veces, puede ser interesante usar simples placas o vigas para conseguir un anclaje eficaz.

Se trata de una solución muy usada en pantallas de tablestacas cuando tenemos que disponer de un apuntalamiento cerca de la cabeza de la pantalla.

En el post de hoy vamos a explicar cómo estimar la fuerza que resisten estas placas embebidas en un terreno arenoso y, por tanto, a calcular este tipo de anclajes.

¿Cuántos espaguetis necesitas para levantar un coche?

No. Con la pregunta no nos referimos a la ingesta de hidratos de carbono que necesitas para ser capaz de levantar un vehículo. No. La pregunta es más literal. Te preguntamos por la cantidad de espaguetis que necesitarías para que con ese manojo se pudiera soportar el peso de un coche.

Por si no tienes la más remota idea, los profesores de la Escuela Politécnica Superior de la Universidad CEU San Pablo de Madrid, no sólo lo han calculado, sino que lo han ensayado con un coche real y te lo muestran en el siguiente vídeo:

¿Sabes cuál fue el primer invento en hormigón armado?

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». Sin embargo, pocos meses después se patentó el primer invento realizado exclusivamente de hormigón armado. Y este invento puede que te desconcierte un poco. 😉

Fue el francés Joseph-Louis Lambot quien después de realizar varias pruebas con mortero y barras de acero y malla de gallinero para construir pequeños depósitos de agua y bebederos, construye y patenta el primer invento realizado en hormigón armado, el cual presentó en la Exposición Universal de París de 1855. Se trató de un pequeño

Predimensionamiento de Estribo cerrado de puente

Ya hemos hablado en varios post sobre cómo predimensionar diferentes tipos de tableros de puente (como los mixtos tipo cajón o de vigas, las losas de hormigón…). Ahora toca meterle mano a los estribos de los puentes.

En este post os dejamos una relación de reglas de dimensiones iniciales para empezar a calcular un estribo de muro cerrado que os ayudarán para que el proceso de cálculo sea lo más rápido posible.

Estas reglas parten de la idea de 

Entrevista a Juan José Arenas de Pablo

Juan José Arenas de Pablo (Huesca, 1940), es Doctor Ingeniero de Caminos, Canales y Puertos por la Universidad Politécnica de Madrid. Fue profesor de Hormigón Pretensado en la Escuela de Caminos de Madrid entre los años 1971 y 1976, y desde entonces, catedrático de Puentes en la Escuela de Caminos de Santander, en la Universidad de Cantabria. Fundó el gabinete de ingeniería APIA XXI (1988) radicado en Santander y la ingeniería de diseño Arenas & Asociados (1999).

Su actividad profesional ha sido incesante desde el mismo año en que acabó la carrera (1963), trabajando en proyectos de puentes y edificios singulares.

En primer lugar, muchas gracias por atender nuestra petición de entrevistarle. Sabemos del gran esfuerzo que ha hecho para poder atendernos y solo podemos reiterarle nuestro agradecimiento.

Si le parece, empezaremos hablar un poco de usted antes de entrar en aspectos más técnicos de sus obras. Y después, si no tiene inconveniente, le preguntaremos por su reciente premio, Ingeniero Laureado por la Real Academia de Ingeniería de España.

Nos gusta comenzar nuestras entrevistas preguntado sobre los motivos que hicieron elegir la ingeniería a nuestros entrevistados. Cuéntenos brevemente cómo fue su infancia y adolescencia: qué tipo de educación recibió y por qué decidió ser Ingeniero de Caminos.

En primer lugar gracias por esta entrevista. Voy a intentar responder a vuestras preguntas de la mejor

Toperas: las estructuras para parar un tren

Hace poco me he visto en vuelto en el cálculo de una de las estructuras mas curiosas de las que han pasado por mis manos en un buen tiempo. Se trata del cálculo de unas “toperas”, las estructuras encargadas de parar el tren cuando todo falla. Cosa que pasa más a menudo de lo que nos creemos:

accidente_topera_salamanca

Accidente en Salamanca en el 2009. Tren sobrepasa la topera.

En este post os explico cómo calcular la Fuerza de Impacto a tener en cuenta en el cálculo de una topera, qué comprobaciones hay que realizar al cuerpo de la topera y cómo plantear el cálculo del armado si se pretende hacerla de hormigón.

Básicamente una topera debe resistir una sola clase de acción, la de

Cuando el sonido diseña nuestra estructura

Quienes hayan seguido mis post desde hace tiempo se habrán dado cuenta que me gusta encontrar condicionantes funcionales de la obra que implican una forma en concreto de la estructura. Hoy le toca a un condicionante que a más de uno le sorprenderá: el sonido.

opera_de_sydney

Fuente: Wikipedia, autor: Joseolgon

Para recapitular, os pongo un cuadro resumen de los artículos en los que hablo del tema, señalando el condicionante, la forma especial de la estructura y el post:

Condicionante

Forma

Post en el que hablamos

Turbulencia de un flujo Curva Jukovski Jukovski, una curva interesante para usar en una estructura
Erosión por flujo Curva Creager Creager, otra curva interesante para usar en una estructura
Peso propio de la estructura Estructura antifunicular Gaudí, el funicular de cargas y un software para calcular en 3d
El Sol Orientación y ciertas dimensiones de la estructura ¿Puede el Sol condicionar la forma de una estructura?
Peso propio y viento Curvas exponenciales ¿Por qué la Torre Eiffel tiene la forma que tiene?
Sobrecargas de uso y peso propio Estructura isotensional o antifunicular Cuando el Cálculo es la herramienta del Diseño: el Puente sobre el Basento de Sergio Musmeci

Cómo podréis apreciar, hablar de todo esto es casi salirse del concepto puro de cálculo de estructuras en sí y entrar en el concepto de diseño funcional. Unas veces, esta delgada línea que divide estos dos conceptos es mas clara que otras. Pero a veces, como el caso que os cantaba de la Torre Eiffel o de las estructuras antifuniculares, la línea es más difusa y, por qué no, “permeable”.

En el post de hoy vamos a ofreceros un ejemplo más de un condicionante, cuando menos, tan singular como los que os venimos contando. Cuando el sonido diseña nuestra estructura: sala de conciertos.

Cuando se diseña una sala de conciertos, el principal objetivo es

Citicorp Center, el rascacielos que pudo colapsar en la Gran Manzana

En el post de hoy vamos a contaros una historia que en más de una facultad se suele mostrar como ejemplo de buena praxis profesional en el mundo de la ingeniería estructural. Se trata de la historia de cómo un rascacielos de 279 m de altura, la torre Citicorp Center en Nueva York, estuvo a punto de colapsar y de cómo gracias a dos casualidades y al buen hacer de un ingeniero, se evitó la catástrofe.

citigroup_center

Lo “gracioso” del  tema es que los neoyorkinos tardaron 18 años en enterarse de que uno de sus rascacielos se les podía haber desplomado encima.

En este post os explicamos en qué consistió el problema estructural, cómo se descubrió el fallo después de que el rascacielos llevara un año puesto en servicio y cómo se procedió a su reparación “in extremis” justo cuando se aproximaba un huracán a la ciudad.

Para empezar a contar bien esta historia hay que retroceder hasta prácticamente

¿Por qué la Torre Eiffel tiene la forma que tiene?

Construida para la Exposición Universal de 1889 en conmemoración del centenario de la Revolución Francesa, la Torre Eiffel se proyectó como un ejemplo de progreso y un logro de la ciencia y la tecnología del siglo XIX.

forma_de_la_torre_eiffel

Su silueta estructural quizás sea una de las más fácilmente reconocibles del mundo. Pero, ¿sabes por qué tiene la forma que tiene?

En este blog hemos hablado más de una vez cómo factores externos pueden determinar la forma nuestra estructura. Ya hablamos como las turbulencias de un flujo podían hacerlo (en Jukovski, una curva interesante para usar en una estructura), o cómo, para evitar una erosión excesiva, podíamos optar por formas específicas (en Creager, otra curva interesante para usar en una estructura). También hablamos de las estructuras isotensionales que nos ahorran material (Gaudí, el funicular de cargas y un software para calcular en 3d), o incluso vimos como nuestro astro rey podía tener mucho que decir en la forma de nuestra estructura (en ¿Puede el Sol condicionar la forma de una estructura?)

En este post te explicaremos cuál fue el motivo que llevó, en junio 1884, a los dos ingenieros principales de la empresa Eiffel, Émile Nouguier y Maurice Koechlin, a elegir la forma actual de la Torre Eiffel.

Cómo estimar la huella de un neumático para nuestros cálculos estructurales

En más de una ocasión he tenido que realizar alguna comprobación de paso de un extravial por encima de una estructura. Es fácil que te faciliten las cargas de los ejes del vehículo e incluso las distancia entre ejes pero casi nunca te ofrecen la superficie donde aplicar dichas cargas, es decir, la huella del neumático.

huella-neumatico-estructuras

El saber que forma tiene la huella de la rueda o área de contacto parece un tema superfluo pero tiene su importancia. Este área de contacto es de vital importancia para comprobaciones locales en la estructura y, si hay terreno entre la rueda y la estructura (como puede suceder en un marco), para saber la distribución de cargas a través del terreno.

En este post os comentamos una forma rápida de estimar la huella de contacto para vuestros cálculos estructurales.

Pregunta con trampa: ¿Cuándo podemos decir que una zapata es rígida o flexible?

Muchos, al leer la pregunta del título de este post, habréis pensando inmediatamente en la regla de que si el vuelo de la zapata es menor que dos veces el canto, la cimentación es rígida, y en caso contrario, flexible. Pues bien, eso no es del todo cierto.

Zapara Flexible o Rígida

En este post os contamos donde está la “trampa” en esta pregunta, que por otra parte, no es un tema despreciable y tiene sus implicaciones como os vamos a comentar.

Ya hace unos cuantos años, justo cuando empezaba esta crisis que lo ha frenado todo, me dirigí a Madrid a defender ante el asesor geotécnico de la obra, unos cálculos de un puente que había realizado para un tramo del AVE. En cierto aspecto estaba contento de conocer a

Cinco libros sobre puentes que te recomendamos para estas vacaciones

Como ya va siendo una tradición, antes de zambullirnos en nuestras merecidas vacaciones, os dejamos una lista de libros sobre estructuras que pueden amenizar vuestras tardes de vacaciones.

cinco libro de puentes para estas vacaciones

La idea es que paséis leyendo un rato ameno sobre lo que más nos gusta, las estructuras y en este caso en particular, sobre puentes.

El año pasado, os dejamos un post con cinco grandes propuestas: “Cinco libros de estructuras que te recomendamos para este verano” sobre estructuras en general y en este post os dejamos otras tantas pero con el foco puesto en los puentes. Espero que os guste.

Empuje de olas sobre muros

Debe ser que mis vacaciones se acercan porque a la hora de pensar un post para esta semana solo se me ocurrían temas relacionados con la playa. Si… Voy necesitando unas vacaciones.

Mientras llegan, os dejo el post de hoy sobre cómo estimar los empujes que generan las olas del mar (o de grandes láminas de agua) sobre muros.

Cálculo de empujes de olas sobre muros

Concretamente os voy a explicar varios métodos desde los más sencillos y groseros, además de más antiguos, a los mas complicados, exactos y actuales.

En todos los métodos siguientes, ofrecemos los sobreempujes hidrodinámicos de las olas sobre muros. Los empujes hidrostáticos (ley triangular de toda la vida) se deberán considerar o no, en función de que supongamos o no que hay agua al otro lado del muro.

Cómo calcular cimentaciones anulares

Un caso especial que se suele dar con frecuencia en depósitos o torres es que su zapata sea de forma anular con simetría de revolución.

cimentacion anular

En este caso, el cálculo de esfuerzos para armar la zapata no es inmediato y no suele venir recogido en los programas de cálculo convencionales.

En este post os dejamos una metodología para poder obtener los esfuerzos de una zapata anular y así poder armarla convenientemente.

El primer paso es calcular las

Un estadio vibrando y cómo calcular las frecuencias fundamentales de una placa

El pasado 19 de mayo un vídeo se hizo viral en las redes sociales mostrando un estadio “vibrando” literalmente debido a que los aficionados saltaban al unísono haciendo entrar la estructura en resonancia.

Se trata del Commerzbank-Arena, en Alemania; el estadio del club deportivo Eintracht Frankfurt que participa en la Bundesliga. Por lo visto, el club se jugaba la permanencia en la categoría y la afición lo dio todo 😕 .

He visto en las redes que hay mucha gente que se ha preguntado si estas cosas, el salto de personas al unísono, se tienen en cuenta en el cálculo de las estructuras.

La respuesta es que sí. Se trata de un Estado Límite de Servicio llamado Estado Límite de Vibraciones.

En general, para cumplir el Estado Límite de Vibraciones debe proyectarse la estructura para que sus frecuencias naturales de vibración se aparten suficientemente de ciertos valores críticos.

En este post vamos a repasar esos valores críticos, deducir la frecuencia que tenía la acción de los aficionados germánicos botando (por cierto, ¿esa no es la canción de Pipi CazasLargas? 😯 ) y de paso os dejo un método simplificado para calcular rápidamente la primera frecuencia fundamental de un forjado.

Jon Nieve usa programas de Dinámica de Fluidos Computacional para diseñar un escudo a prueba de fuego de dragón

La nueva temporada de Juego de Tronos ya ha empezado y la expectación es máxima. Mas ahora que se sabe que Jon Nieve ha estado usando programas de Dinámica de Fluidos Computacional (CFD) para diseñar un escudo a prueba de fuego de dragón.

cfd

Parece ser que esta es la curiosa campaña de marketing de una conocida empresa de software de cálculo de estructuras. Se trata de un vídeo explicativo de cómo Jon Nieve hace practicas con el un programa de CFD para tomar decisiones sobre el diseño de su escudo.

En este post os dejamos el enlace al vídeo

Cómo realizar un emparrillado para tableros de losa aligerada

Siguiendo con el ciclo sobre el cálculo de tableros de puente que empezamos con el post “Cómo realizar un emparrillado para tableros de losa maciza” hoy vamos a hablar del emparrillado para tableros de losa aligerada.

emparrillado losa aligerada

Veremos que los aligeramientos en estos tableros, nos obliga a tener cuidado a la hora de asignar áreas e inercias de flexión y torsión a las barras de nuestro emparrillado para tener en cuenta el efecto de la deformación por cortante que inducen los aligeramientos.

Como la otra vez, el primer paso es la realización de la malla. Para ello se dispondrán tantas

Salvemos el Puente de Ariza

El Puente de Ariza, obra cumbre de ingeniería civil de Andrés de Vandelvira, figura clave del renacimiento español, está en peligro de desaparición.

Puente-Ariza bl

Fuente: listarojapatrimonio.org/

Situado entre Linares y Úbeda (Jaén), el Puente de Ariza quedó sumergido bajo las aguas del embalse del Giribaile en 1998, pese a ser un Bien de Interés Cultural, en la categoría de Monumento (desde  el 4 de febrero de 1993). Desde entonces, de sequía en sequía, emerge y se deja ver fantasmagórico.

Fue construido entre 1550 y 1560 según el proyecto del arquitecto y maestro de cantería Andrés de Vandelvira, autor también de la Catedral de Jaén, y financiado por el obispo de Jaén, D. Diego de los Cobos y Molina, por tratarse de la principal vía de comunicación entre Úbeda y la meseta. Pertenece al tipo de puentes de bóvedas de gran luz que se construyeron en esa época. De fábrica de sillería con una longitud aproximada de 100 metros y 17 metros de altura en su punto más elevado, con 5 bóvedas de cañón, supera la central los 31 m de luz, poseyendo además una embocadura de doble rosca.

Cómo realizar un emparrillado para tableros de losa maciza

Hoy vamos a inaugurar un nuevo ciclo de post sobre cálculo de tableros de puente. Concretamente vamos a dar unas pautas o reglas básicas sobre cómo se realiza el modelo de emparrillado de diversos tipo de tableros de puentes. Empezando por los tableros de losa maciza.

Emparrillado losa maciza

El modelo de emparrillado no es más que una estrategia de combinar el poder de los elementos barras (elementos unidimensionales), y como poder me refiero a la facilidad que nos ofrece el obtener esfuerzos mediante métodos matriciales, homólogamente a como se obtendrían considerando elementos bidireccionales.

La modelización mediante emparrillado debe realizarse

El Puente sobre el río Nipigon con graves problemas tras su apertura

El Puente sobre el río Nipigon (Ontario, Canada) está con graves problemas tan solo dos meses después de su apertura.

Puente-nipigon-fallo

Foto por Ashley Littlefield

El pasado domingo 10 de enero, el primer puente atirantado de Ontario, sufría un fallo en la zona de la junta del tablero oeste con el estribo. Como se puede apreciar en la foto anterior, el desplazamiento relativo del tablero con el estribo en la zona de la junta ha llegado a los 60 cm.

Puente sobre el río Nipigon durante su construcción

Puente sobre el río Nipigon durante su construcción

El Puente sobre el río Nipigon abrió a la circulación su tablero “oeste” el pasado 29 de noviembre. El tablero “este” está todavía en construcción.

Se trata de un proyecto de 106 millones de dolares construido por

La UPV desarrolla un ladrillo antisísmico

Investigadores del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València (UPV) han desarrollado un nuevo dispositivo cuyo diseño y componentes permiten aislar sísmicamente la tabiquería del resto de la estructura del edificio.

Ladrillo Antisísmico

Estructurando ha podido hablar con Francisco J. Pallarés Rubio, Dr. Ing. Caminos, Canales y  Puertos, miembro del equipo que ha ideado el sistema, y nos ha contado en qué consiste este “ladrillo antisísmico”, cómo funciona y cómo puede ser aplicado a las obras actuales. Además nos ha facilitado vídeos y fotos de este sistema en acción en una simulación recreada en el laboratorio.

¿Es verdad que la tela de araña es más resistente que el acero?

Últimamente he visto en varios medios, la afirmación de que la tela de araña es mucho más resistente que el acero. Hasta más de 5 veces he llegado a leer…

Más de un artículo hay por ahí donde se afirma que una tela de araña con hilos del grosor de un lápiz podría ser capaz de parar de golpe a un avión a reacción como un Boeing 747 o que la escena de la película de Spiderman donde el héroe es capaz de parar con su tela un tren descontrolado es totalmente plausible.

Tela de araña y acero

Pues bien, ya que estamos en un blog que se dedica a las estructuras y la resistencia de materiales, en este post me he propuesto a responder a la pregunta: ¿Qué hay de verdad en lo que dicen sobre la tela de araña y sus bondades frente al acero?

Breve resumen del Coeficiente de Balasto

Uno se cree que un tema está más que trillado, como puede ser el coeficiente de balasto, cuando todavía me sorprende encontrar proyectos donde está mal aplicado o simplemente no se molestan en hacerlo correctamente.

Con el fin de dejar mi granito de arena para que el uso de este concepto esté mejor aplicado en los proyectos, dejo el post de hoy: un pequeño compendio sobre lo que es el Coeficiente de balasto, cómo se deduce de los ensayos el valor del K30 y cómo manejar ese valor para utilizarlo en nuestros cálculos estructurales. Además, recopilo varias formulaciones que creo que os pueden ser interesantes para los que el tema ya lo domináis.

Coeficiente de Balasto

El coeficiente de balasto Ks es un parámetro que se define como la relación entre la presión que actúa en un punto, p, y el asiento que se produce, y, es decir Ks=p/y. Este parámetro tiene dimensión de peso específico y, aunque depende de las propiedades del terreno (esto no se le escapa a nadie) no es una constante del mismo ya que también depende de las dimensiones del área que carga contra el terreno (esto es lo no toda la gente no tiene tan claro).

Veamos cómo podemos estimar el valor del coeficiente de balasto. Existen dos

Ya está a la venta el Kit Mola Estructural

Ya os hablamos hace un tiempo del Kit Mola Estructural (“Un juguete para los que nos gustan las estructuras“) y desde entonces no hemos parado de recibir comentarios y mails preguntando sobre su coste y sobre la fecha de salida a venta.

Así que nos pusimos en contacto con el autor de esta idea, el brasileño Márcio Sequeira de Oliveira, y nos comentó que en cuanto saliera a la venta nos avisaría. Y así ha sido: El Kit Mola Estructural ya está a la venta.

Para los que no hayan leido el post anterior, se trata de un modelo interactivo que simula estructuras reales. Con elementos sencillos, de pequeñas dimensiones, se puede experimentar, estudiar y enseñar el comportamiento de las estructuras. Se puede montar, visualizar y sentir las estructuras en tus propias manos:

Para los interesados, os dejamos el enlace de la hoja de pedido, con un precio de

¿Qué relación existe entre la aceleración de cálculo del sismo y la escala sismológica de Richter y la de Mercalli?

A la hora de calcular una estructura frente al sismo, un dato fundamental es la aceleración de cálculo de la zona donde se va a construir la obra.

Sin embargo, la sismología mundial usa la escala sismológica de Richter para determinar la magnitud de sismos de entre 2,0 y 6,9. Para  sismos superiores a 6,9 se utiliza la escala sismológica de magnitud de momento. Incluso, todavía se suele usar la escala Mercalli o podemos encontrarla en textos con una cierta edad.

portada

Entonces, cuando oímos en los medios de comunicación que el terremoto de Nepal fue de 7,8 de magnitud, o el terremoto de Lorca fue de 5,3 de magnitud ¿cómo podemos hacernos una idea de la aceleración sísmica que asumieron las estructuras en esos terremotos?

En este post os presento un par de formulaciones empíricas y tablas para poder hacernos una idea y un listado de terremotos famosos con su magnitud.

Después de verano inauguramos cursos de estructuras en nuestro blog

Desde hace tiempo hemos ido recibiendo mails y comentarios de nuestros lectores pidiéndonos información sobre cursos y másteres sobre ingeniería estructural. En un principio añadimos la sección de “Cursos” y “Másteres” al blog, dejando información sobre este tema que, a nuestro juicio, tenían especial interés.

Sin embargo, seguimos recibiendo mails solicitándo que fuéramos nosotros mismos los que diéramos alguna clase de formación sobre estructuras.

cursos estructurando

Así que David y yo lo hablamos y tras pensarlo detenidamente hemos decidido realizar cursos de estructuras en nuestro portal basándonos en las siguientes premisas:

  • Los cursos deben ser claros, amenos, llenos de información útil y, sobre todo, prácticos. Que sean útiles en la vida cotidiana del ingeniero de estructuras. Es decir, basarse en el mismo principio con el que partimos cuando empezamos este blog de estructuras. Al fin y al cabo,  ¡es nuestra seña de identidad!
  • Deben contar con el software más puntero del sector para que los cursos sean realmente útiles. Para ello hemos realizado convenios y acuerdos con distintas empresas del sector. Y no sólo contar con el software si no también con la colaboración de sus desarrolladores, lo que da un importante valor formativo a los cursos.
  • Que llenen los huecos con los que el técnico de estructuras se va encontrando a lo largo de su labor profesional (cursos novedosos).

Con estos principios en la cabeza y después de llamar a mucha gente, os presentemos de forma resumida los tres cursos que empezaremos a impartir el próximo octubre:

Piloedre, un nuevo tipo de cimentación para estructuras ligeras

Cuando me enteré que este nuevo sistema de cimentación para estructuras ligeras lo había desarrollado Juan José Rosas, uno de los blogueros más punteros y curtidos de la blogosfera ingenieril, no dudé en ponerme en contacto con él para que me contara, de primera mano, de qué se trataba.

Piloedre

En cierto sentido me siento en deuda con Juan José por que leer blogs como el suyo, Geojuanjo, fue uno de los principales estímulos para crear el nuestro.

Así que, dado que Juan José me ofreció multitud de información sobre el invento, la existencia de esa sentimental deuda que os comento y, sobre todo, porque el sistema es de lo más interesante en cimentaciones que he visto hace tiempo, os propongo el post de hoy. Un post donde os describo el sistema, explico para qué sirve y cómo se instala, sus ventajas frente a otras soluciones y, lo más interesante, cómo se calcula.